you"ll$92931$ - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

you"ll$92931$ - translation to Αγγλικά

LEFT-TO-RIGHT, LEFTMOST DERIVATION TOP-DOWN PARSER FOR A SUBSET OF CONTEXT-FREE LANGUAGES
LL(1); LL parsing; LL(k); LL Parsing table; LL(1) language; LL1; Left factoring; LL(k) parser

you'll      
v. you will (unito ad altro verbo per indicare il tempo futuro)
where are you         
WIKIMEDIA DISAMBIGUATION PAGE
Where Are You?; Where Are You (disambiguation); Where Are You? (album); Where Are You? (song); Where Are You (song)
dove sei
pay as you go         
WIKIMEDIA DISAMBIGUATION PAGE
PayAsYouGo; Pay As You Go; Pay-as-you-go; Payg; Payas you go; Pay as you go (disambiguation); PAYG (disambiguation)
pagare le tasse mediante trattenute sulla retribuzione

Ορισμός

ll.
¦ abbreviation (in textual references) lines.

Βικιπαίδεια

LL parser

In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.

An LL parser is called an LL(k) parser if it uses k tokens of lookahead when parsing a sentence. A grammar is called an LL(k) grammar if an LL(k) parser can be constructed from it. A formal language is called an LL(k) language if it has an LL(k) grammar. The set of LL(k) languages is properly contained in that of LL(k+1) languages, for each k ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(k) parser.

An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time.

Two nomenclative outlier parser types are LL(*) and LL(finite). A parser is called LL(*)/LL(finite) if it uses the LL(*)/LL(finite) parsing strategy. LL(*) and LL(finite) parsers are functionally more closely resemblant to PEG parsers. An LL(finite) parser can parse an arbitrary LL(k) grammar optimally in the amount of lookahead and lookahead comparisons. The class of grammars parsable by the LL(*) strategy encompasses some context-sensitive languages due to the use of syntactic and semantic predicates and has not been identified. It has been suggested that LL(*) parsers are better thought of as TDPL parsers. Against the popular misconception, LL(*) parsers are not LLR in general, and are guaranteed by construction to perform worse on average (super-linear against linear time) and far worse in the worst-case (exponential against linear time).

LL grammars, particularly LL(1) grammars, are of great practical interest, as parsers for these grammars are easy to construct, and many computer languages are designed to be LL(1) for this reason. LL parsers may be table-based, i.e. similar to LR parsers, but LL grammars can also be parsed by recursive descent parsers. According to Waite and Goos (1984), LL(k) grammars were introduced by Stearns and Lewis (1969).